
MQ Technical Conference v2.0.1.7

MQ Automation: 
Config Management using 

Baselines, Patterns and Apps
T.Rob Wyatt



MQ Technical Conference v2.0.1.7

Cloud is good!
All the advantages we used to like about SOA and ESB:

 Availability 

 Network ubiquity

 Ephemeral instances

 Location independence

 Horizontal scale-out, scale-back

 Dynamic, run-time resolution of endpoints



MQ Technical Conference v2.0.1.7

Cloud is different
Reconsider “best” practices in light of

 Organic growth or,

 Plethora of patterns or,

 Ultra-personalization or,

 Multi-tenancy shared hubs or,

 Decentralized administration or,

 Swarms of ephemeral instances or,

 …



MQ Technical Conference v2.0.1.7

If you do what you’ve 
always done,

You’ll get what you’ve 
always got.

Right?



MQ Technical Conference v2.0.1.7

If you administer MQ

in the cloud 

the way it’s always been done, 

you get the network 

you always had.



MQ Technical Conference v2.0.1.7

How do you manage and secure clusters 

with ephemeral nodes?

Do all your QMgrs have the same name?



MQ Technical Conference v2.0.1.7

How do you ensure access is granted on a least‐

privilege, need‐to‐know basis

How do you reconcile dynamicity, 

manageability and consistency?



MQ Technical Conference v2.0.1.7

How do you make sure that 

monitoring and operational instrumentation

is consistently installed

and correctly configured?



MQ Technical Conference v2.0.1.7

How do you provide 

consistent, reliable, repeatable, dynamic,

defect‐free configurations

at scale

and in budget?



MQ Technical Conference v2.0.1.7

Design for manageability
Configuration considerations include:

 Static vs. Dynamic

 Consistency vs. volatility

 Functional demarcation

 Ownership and stakeholders

 Quality vs. Speed vs. Cost vs. scale



MQ Technical Conference v2.0.1.7

Layered configuration architecture

Universal Configuration Baseline
Pattern Pattern Pattern Pattern

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

A
P
P

QMGR 1 QMGR 2 QMGR 3 QMGR 4



MQ Technical Conference v2.0.1.7

Configuration Baseline
Elements that exist on all nodes

Possibilities include:

 Certificates

 Event settings

 Monitoring agents

 Cluster membership

 Provision admin access

 Derivation of QMgr name



MQ Technical Conference v2.0.1.7

Functional patterns
Tuning specific to classes of service or topology
Possibilities include:

 System of record (Highly available, deep well known queues, etc.)

 Client concentrator (Few or no well-known queues, lots of channels, etc.)

 Low-latency failover (Few & small logs, low MAXDEPTH, etc.)

 Shared Hub

 B2B Gateway

 Order preservation

 Managed File Transfer

 Advanced Message Security



MQ Technical Conference v2.0.1.7

Applications
Objects specific to each app

 Each QMgr can host multiple apps

 Supports same app on more than one MQ node

 Configuration variability within a given app is supported

 Inheritance of local attributes into app names supported
 Dev, SIT, UAT, etc.
 Versioning

 Portable across QMgrs



MQ Technical Conference v2.0.1.7

In practice
 Baseline maintained by MQ Administration team

 Collaboration of MQ Admin/Architect team & stakeholder teams, possibly including:
 Enterprise Security/Audit
 Accounts administration
 Platform SA
 Operations

 Represent platform (Appliance, UNIX, Windows, z/OS, etc.) 

 Patterns are offerings to LOB customers
 Collaboration between LOB teams and MQ Admin/Architect team
 Compromise between need for standardization vs unlimited customization
 Represent classes of service based on function
 Represent topology (Gateway, client concentrator, enclave, etc.)
 Represent platform (Appliance, UNIX, Windows, z/OS, etc.)

 App configurations tailored to business requirements
 Collaboration between LOB teams and MQ Admin/Architect team
 Supports business functions
 Supports app-specific user access, monitoring
 Inherits local metadata values



MQ Technical Conference v2.0.1.7

Configuration versioning
 Configuration files once deployed are static objects.

 Copy, edit and increment version number to make changes
 A given node can have one and only one version of a configuration
 Multiple versions can co-exist across nodes to support migration, resource availability
 Redeploy prior version to fallback after deploy new version

 Configuration version is inherited metadata
 Namelist object name corresponds to baseline/pattern/app name
 Metadata stored in namelist entries
 Queryable at run time by automation, interactive user
 Queryable offline in object backup files

 Version metadata can be propagated to object names where appropriate
 For example, where queues represent service endpoints



MQ Technical Conference v2.0.1.7

Portability
 Queue managers are containers for business objects

 Apps should not be QMgr-aware
 Apps can be QMgr alias aware 

 Location independence
 Endpoints can be resolved at run-time from the configuration database
 Virtual IP or DNS can be used for redirection to physical instance
 IP sprayers may be suitable for MQ client connections

 Introspection
 Inheritance of locally relevant metadata
 Inheritance of local configuration differences in lower layers
 Use of MQSCX to query local configuration can greatly reduce number of configuration 

files and versions.



MQ Technical Conference v2.0.1.7

MQ Version migration
My personal “Recommended Practice” makes MQ version migration easy

 Pool of nodes at -1, Current, and +1 version
 Example: v7.5, v8.0 and v9.0

 The -1 version is deprecated, the +1 version is targeted
 Exception process for apps that can’t get at least to -1 version
 Possibly with premium chargeback

 Constant migration forward across all application teams
 Each app on its own schedule
 Supports high density multi-latency
 Provides smooth, easy fallback

 As nodes in the -1 pool become idle, redeploy as Current or +1 version
 Manage workload, capacity by leapfrogging



MQ Technical Conference v2.0.1.7

Consistency over time
Reconciliation of definitive As-Specified config to As-Running

 Intrusion detection if configuration changes unexpectedly

 Enforce standards where required

 Configuration “drift” may highlight unmet needs

 Configuration “drift” may reveal skill gaps
 For example, tuning that conflicts with the underlying pattern
 Working outside the configuration management system

 Central configuration database 
 Shows “estate at a glance”
 Edit configurations offline using text files, templates, or tools



MQ Technical Conference v2.0.1.7

Automation is essential
Scale up without increasing admin overhead or defects

 Minimal prereq on host node is almost all static
 MQ installed
 IBM GSKit and/or OpenSSL
 KSH, BASH or other script interpretation engine

 Automation detects local customization that determines what to build
 May be env vars, IP address, DNS name, host name, parm files
 Typically specified in the virtualization or deployment package dashboard

 Automation pulls down boot script, automation libraries, config modules
 Use local parameters to resolve which configuration to use
 Apply substitutions from local parms and config files
 Build to precise spec

 On-host operator activities minimized
 Execute a single boot script
 Drastically reduced defects, turnaround time, and cost



MQ Technical Conference v2.0.1.7

Multiple Successful Prod deployments

 Developed and refined across several client engagements

 Can be customized heavily without breaking the architecture

 Gem Software’s MQSCX greatly multiplies benefits relative to cost

 Can be integrated into anything with an API
 For config management system of record
 For outbound notifications – “You’ve got MQ!”

A *very* quick and dirty version is presented in the companion session:
MQ Automation: Config Management using Amazon S3

Aloeswood room
 Monday 15:50
 Wednesday 8:30



MQ Technical Conference v2.0.1.7

Questions & Answers


